
Chapter 14

PROFILING SYMBOLIC
REGRESSION-CLASSIFICATION

Michael F. Korns1, Loryfel Nunez1
1Investment Science Corporation, 1 Plum Hollow, Henderson,Nevada 89052 USA

Abstract This chapter performance-profiles a composite method of symbolic regression-
classification, combining standard genetic programming with abstract grammar
techniques, particle swarm optimization, differential evolution, context aware
crossover, and age-layered populations. In two previous papers we experimented
with combining high performance techniques from the literature to produce a
large scale symbolic regression-classification system. Inthis chapter we briefly
describe the current combination of techniques and make theassertion that Sym-
bolic Regression-Classification (via Genetic Programming) is now ready for some
industrial strength applications. This aggressive assertion is supported with per-
formance metrics on multiple large scale problems which arescored on testing
data which is always distinct from the training data. Each problem contains ten
thousand fitness cases (rows) and problems vary in complexity from one to thirty
independent variables (columns). In each problem, the dependent variable is
generated by a test expression which varies in complexity from simple linear
to complex non-linear often including conditionals (if-then-else clauses) with
random noise starting at zero percent and rising up to forty percent.

Keywords: artificial intelligence, genetic programming, particle swarm optimization, differ-
ential evolution, portfolio selection, data mining, formal grammars, quantitative
portfolio management

1. Introduction

This is the continuing story of the issues encountered by Investment Science
Corporation in using composite genetic programming techniques to construct
a large-scale, time-constrained symbolic regression-classification tool for use
with financial data.

In two previous papers (Korns, 2006; Korns, 2007) our pursuit of indus-
trial scale performance with large-scale, time-constrained symbolic regression



216 GENETIC PROGRAMMING THEORY AND PRACTICE VI

problems, required us to reexamine many commonly held beliefs and, of ne-
cessity, to borrow a number of techniques from disparate schools of genetic
programming and "recombine" them in ways not normally seen in the pub-
lished literature. We continue this tradition in this current paper, building a
symbolic regression-classification tool combining the following disparate tech-
niques from the genetic and evolutionary programming literature:

Standard tree-based genetic programming

Vertical slicing and out-of-sample scoring during training

Grammar template genetic programming

Abstract grammars utilizing swarm intelligence

Context aware cross over

Age-layered populations

Random noise terms for learning asymmetric noise

Bagging

For purposes of comparison, all results in this paper were achieved on two
workstation computers, specifically an Intelc©Core 2 Duo Processor T7200
(2.00GHz/667MHz/4MB) and a Dual-Core AMD Opteronc©Processor 8214
(2.21GHz), running our Analytic Information Server software generating Lisp
agents that compile to use the on-board Intel registers and on-chip vector pro-
cessing capabilities so as to maximize execution speed, whose details can be
found atwww.korns.com/DocumentLisp LanguageGuide.html.

Fitness Measure

Standard regression techniques often utilize least squares error (LSE) as a
fitness measure. In our case we normalize by dividing LSE by the standard
deviation of "Y" (dependent variable). This normalizationallows us to mean-
ingfully compare the normalized least squared error (NLSE)between different
problems.

Of special interest is combining fitness functions to support both symbolic
regression and classification of common stocks into long andshort candidates.
Specifically we would like to measure how successful we are atpredicting the
future top 10% best performers (long candidates) and the future 10% worst
performers (short candidates) (Korns, 2007).

Briefly, let the dependent variable, Y, be the future profits of a set of securities,
and the variable, EY, be theestimatesof Y. If we were prescient, we could
automatically select the best future performersactualBestLongs, ABL,andworst



Profiling Symbolic Regression-Classification 217

future performersactualBestShorts, ABS,by sorting on Y and selecting an
equally weighted set of the top and bottom 10%. Since we are not prescient, we
can only select the best future estimated performersestimatedBestLongs, EBL,
and estimated worst future performersestimatedBestShorts, EBS,by sorting on
EY and selecting an equally weighted set of the top and bottom10%. If we let
the functionavgyrepresent the average y over the specified set of fitness cases,
then clearly the following will always be the case.

-1<= ((avgy(EBL) - avgy(EBS)) / (avgy(ABL) - avgy(ABS)))<= 1
We can construct a fitness measure known as tail classification error, TCE,

such that
TCE= ((1 - ((avgy(EBL) - avgy(EBS)) / (avgy(ABL) - avgy(ABS))))

/ 2)
and therefore

0<= TCE<= 1
A situation where TCE < .5 indicates we are making money speculating on

our short and long candidates. Obviously 0 is a perfect score(we might as well
have been prescient) and 1 is a perfectly imperfect score (other traders should
do the opposite of what we do). Clearly, considering our financial motivation,
we are interested in achieving superior regression fitness measures; but, we
are also interested in superior classification. In fact, even if the regression
fitness (NLSE) is poor but the classification (TCE) is good, wecan still have an
advantage, in the financial markets, with our symbolic regression-classification
tool.

Since both the TCE and NLSE fitness measures are normalized, we can make
standard interpretations of results across a wide range of experiments. In the
case of NLSE, any score of .3 or less is very good (meaning the average least
squared error is less than 30% of the standard deviation of Y), while a score
of less than .5 is okay, NLSE scores greater than .5 indicate increasingly poor
regression results. Our system automatically averages theestimates of the ten
top champions (bagging) whenever the training NLSE of the top champion is
greater than .5. Finally, a TCE score of less than .2 is excellent. A TCE score
of less than .2 is good; while, a TCE of .5 or greater is poor.

Vertical Slicing

We make use of an out-of-sample testing procedure we callvertical slicing,
wherein the rows in the training matrix X are sorted in ascending order by the
dependent values, Y. Then the sorted rows in X are subdividedinto Svertical
slicesby selecting every S-th row to be in each vertical slice. Thusthe first
vertical slice is the set of training rows as followsX[0], X[S], X[2*S], ... . We
train on a single vertical slice, but test on all vertical slices (Korns, 2006).



218 GENETIC PROGRAMMING THEORY AND PRACTICE VI

Since Y represents thebehaviorof the system to be learned, sorting X by Y
insures that each vertical slice contains training examples equally distributed
across the range of behaviors of the system. For complete training coverage,
every epoch we randomly select a different vertical slice asthe training subset
while still scoring fitness across every fitness example in X.

Vertical slicing reduces training time (which in multiple regression and
swarm grammars can be time consuming); while simultaneously reducing over
fitting by scoring fitness over all slices (out-of-sample testing).

Abstract Grammar

Recently, informal and formal grammars have been used in genetic pro-
gramming to enhance the representation and the efficiency ofa number of ap-
plications including symbolic regression – see overviews in (O’Neill and Ryan,
2003) and (Poli et al., 2008).

Our system implements a hybrid combination of tree-based GPand formal
grammars where the head of each sublist is a grammar rule withpolymorphic
methods for mutation, crossover, etc. Different grammar rules communicate
with each other by message passing. We use standard mutationand crossover
operations (Koza, 1992) and support both simple regressionand multiple regres-
sion, as follows:regress(expression); andregress(expression,...,expression).

Our numeric expressions are JavaScript-like containing the variablesx0
throughxm (wherem is the number of columns in the regression problem),
real constants such as2.45 or -34.687, with the following binary and unary
operators +, -, /, %, *,<,<=, ==, ! =,>=,>, expt, max, min, abs, cos, cosh,
cube, exp, log, sin, sinh, sqroot, square, tan, tanh, and theternary conditional
expression operator if (...) then ... else ...;

In (Korns, 2006), we implemented both the production and recognition side
of our grammars. Later in (Korns, 2007) we developed an abstract grammar
which is evaluated using swarm intelligence and provides excellent fine grain
control during evolution.

The enhancement of abstract real constantsc0 throughck (wherek is the
number of unique abstract real constants in the expression)allows more fine
grain control over the evolution of optimal real numbers during the GP process.

For instance, the following concrete expressionregress(3.4*sin(x3)), when
evaluated, has a fitness score based upon regressing 3.4 times the sine of variable
three. However, the following abstract expressionregress(c0*sin(x3)), which
must be evaluated in a swarm agent, has a fitness score based upon the swarm
agent’s choice of optimal real constant forc0. Our experience is that swarm
intelligence is an excellent method of optimizing specific real constants.



Profiling Symbolic Regression-Classification 219

Additionally, the enhancement of abstract variablesv0 throughvj (wherej
is the number of unique abstract variables in the expression) allows more fine
grain control when optimizing formulas with a specific grammatical format.

For instance, the following abstract expressionregress(c0*sin(v0)), which
must be evaluated in a swarm agent, has a fitness score based upon the swarm
agent’s choice of actual real constant forc0and the swarm’s choice of actual con-
crete variablev0. An example of an optimized champion from the swarm agent
might beregress(-.416*sin(x10)). One is always assured that the final swarm
optimized champion will be in a form compatible with the abstract grammar
expression supplied. The possibilities for addressing bloat are obvious.

This year, as anextensionof our previous experiments with abstract grammar,
we introduce abstract random noise termse0throughekfor learning asymmet-
ric noise (Schmidt and Lipson, 2007). For instance, the following abstract
expressionregress(c0*sin(v0+e0)), which must be evaluated in a swarm agent,
is evaluated iteratively an additional number of times withrandom values be-
tween -1 and +1 replacing thee0noise term. The fitness score is based upon
the swarm agent’s choice of actual real constant forc0and the choice of actual
variable forv0, while the noise terme0 is randomly fluctuated between -1 and
+1 as described in greater detail in (Schmidt and Lipson, 2007).

By using an abstract expression grammar with imbedded swarmoptimiza-
tion, we achieve more fine-grained control, of numeric constant optimization,
expression bloat, and learning asymmetric noise.

Context-aware Crossover

In (Majeed and Ryan, 2006) an extension of standard GP crossover was
devised. In standard GP crossover (Koza, 1992), a randomly chosen snip of
genetic material from the father s-expression is substituted into the mother s-
expression in a random location. In context-aware crossover, a randomly chosen
snip of genetic material from the father s-expression is substituted into the
mother s-expressionat all possible valid locations. Where standard crossover
produces one child per operation, context-aware crossovercan produce many
childrendepending upon the context(Korns, 2007).

We further extended context-aware crossover such thatall possible valid
snips of genetic material from both the mother and father aresubstituted into
both parentsat all possible valid locations. Each of the many offspring are
evaluated with only the survivors being added to the pool. Weadd our ex-
tended context-aware crossover to all GP runs in our system with a increasing
probability with each additional generation.

Context-aware crossover holds-forth the promise of greater coverage of
the local search space, as defined by the candidate s-expressions’ roots and



220 GENETIC PROGRAMMING THEORY AND PRACTICE VI

branches, and, therefore, a greater control of the evolutionary search at a fine
grain level.

Age-Layered Populations

In (Hornby, 2006) a technique is introduced, known asaged-layered popula-
tion structure(ALPS), devised to minimize premature population convergence.
ALPSs evolve populations in several significant ways. New random popula-
tions are generated at irregular intervals over the duration of the evolutionary
process. Populations are segmented by the age of the individuals with evolu-
tionary competition restricted to individuals within roughly the same age cohort
(young individuals are not allowed to be swamped by more mature individu-
als). At irregular intervals, younger champions are promoted into populations
allowing competition with older individuals (Hornby, 2006).

ALPS differs from a typical evolutionary process by segregating individuals
into different age-layers and by regularly introducing new, randomly generated
individuals in the youngest layers. The introduction of randomly generated
individuals at regular intervals results in an evolutionary process that is never
completelyconverged and is always exploring new parts of the fitness landscape.
By restricting the age of competitors and breeding within anage cohort, younger
individuals are able to develop without being swamped by older ones. Analysis
of the behavior of ALPS finds that individuals that are randomly generated
mid-way through a run are able to move the population out of mediocre local
optima to better parts of the fitness landscape. If they are allowed to develop,
in their youth, free from unfair competition by more mature adults.

Experimental Setup

Our goal is to profile the performance of ourgenetic symbolic regression-
classification machine(GSM) on a series of symbolic regression-classification
problems. All of our symbolic regression-classification problems consist of a
training phase and a distinct testing phase. In the trainingphase, an (N x M)
real number matrix, X, is filled with random numbers1. Then a training model,
f(x), is selected to create a real number N-dimensional vector of dependent
variables, Y, as follows:

Y = f(X) + noise; vector equation
Training models vary from simple linear all the way to complex nonlinear.

For example:
y = 1.57 + (1.57*x0) - (39.34*x1); simple linear

1N refers to number of rows in the matrix (always 10,000 rows unless otherwise stated). M refers to the
number of columns (columns vary from 1 to 30 depending upon test difficulty). The range of the random
numbers is from -50 to +50 unless otherwise stated.



Profiling Symbolic Regression-Classification 221

y = ((1.57*x0)%(39.34*x1))

+ (if (log(x0) == x2) {sin(2.13*x2)}
else {((39.34*x1)%(2.13*x2))}); complex nonlinear

In (Korns, 2007) we published nine base training models which vary from
simple linear to complex nonlinear. In this paper we generate numerous training
models at random. These training models vary from simple linear to complex
nonlinear2. Furthermore, our problem set varies from one column problems to
more difficult thirty column problems, and from zero random noise to problems
with 40% random noise, which is generated as follows:

y = (y * 0.8) + (y * random(0.4));
The output of the training phase is a champion estimator model, ef, which,

when evaluated on the training matrix, generates an estimated N vector, EY:
EY = ef(X) + noise; estimator model
In the testing phase, another (N x M) real number matrix, TX, is filled with

random numbers. Then the original training model, f(x), is evaluated on TX
to create a real number N vector of dependent testing variables, TY. Then the
champion estimator model, ef, is evaluated on the testing matrix, TX, and the
normalized least squares error (NLSE) difference between EY and TY is the
final out-of-sample testing score.

For each of the numerous experimental problems attempted for this profiling
study, we collected the following important data: Unique Problem Identifier;
Training generations to completion; Training noise; Training minutes to com-
pletion; Training normalized least squared error (NLSE); Testing normalized
least squared error (NLSE); Testing classification error (TCE); Champion esti-
mator model; and the Training model.

Results on Nine Base Problems

The results of training on the nine base training models on 10,000 rows and
twenty columns with 40% random noise and only 20 generationsallowed, are
shown in Table 14-1.

Fortunately, training time is very reasonable given the difficulty of some
of the problems and the limited number of training generations allowed. In
general, average percent error performance is poor with thelinear andcubic
problems showing the best performance. Extreme differences between training
error and testing error in themixedand ratio problems suggest over-fitting.
Surprisingly, long and short classification is fairly robust in most cases with the
exception of thehidden, ratio andhypertest cases. If we were to run a market
neutral hedge on hypothetical markets, driven by these ninetest models, we
would have made money in all but one of the markets, made a little money in

2The complete set of randomly generated training models are described in detail on www.korns.com.



222 GENETIC PROGRAMMING THEORY AND PRACTICE VI

Table 14-1. Result for 10,000 rows by 20 columns with Random Noise. The columns are:Test:
The name of the test case;Minutes: The number of minutes required for training;Train-Error:
The average percent error score for the training data;Test-Error: The average percent error score
for the testing data; andClassify: The classification score for the testing data.

Test Minutes Train-Error Test-Error Classify
cross 9 0.80 0.80 0.19
cubic 10 0.11 0.11 0.00
hyper 9 0.96 0.96 0.36
elipse 12 0.45 0.46 0.05
hidden 10 0.99 0.99 0.45
linear 10 0.11 0.11 0.00
mixed 12 0.69 1.85 0.07
ratio 26 0.95 1.18 0.46
cyclic 8 0.39 0.91 0.18

the markets driven by thehiddenandhypermodels, broken even in the market
driven by theratio model, and made excellent money in all other markets.

The salient observation is the relative ease of classification compared to
regression even in problems with this much noise. In five of the test cases,
testing NLSE is either close to or exceeds the standard deviation of Y (not very
good); however, in six of the test cases classification is below 20

The obvious comparison with the above difficult problems would be to
try easier problems by eliminating the random noise, reducing the number
of columns, and increasing the number of training generations allowed. The
results of training on the nine base training models on 10,000 rows andfive
columnswith no random noiseand up to200generations allowed, are shown
in Table 14-2.

Fortunately, reducing the problem difficulty greatly improves the results. In
general, average percent error performance is now very good. Extreme differ-
ences between training error and testing error in themixedandratio problems
suggest over-fitting. Long and short classification is excellent in most cases
with the exception of theratio test case.

Now let us examine the performance of the GSM tool in the many problems
whose difficulty falls in between the two extremes shown above. In the next few
sections, we will profile the behavior of the tool on a wide range of randomly
generated problems.

Results on Advanced Problems. Using the system’s production grammar
features, we generated thousands of symbolic regression problems ranging from



Profiling Symbolic Regression-Classification 223

Table 14-2. Result For 10,000 rows by 5 columns no Random Noise. The columns are the same
as in Table 14-1.

Test Minutes Train-Error Test-Error Classify
cross 107 0.37 0.39 0.02
cubic 0 0.00 0.00 0.00
hyper 369 0.00 0.00 0.00
elipse 0 0.00 0.00 0.00
hidden 3 0.00 0.05 0.00
linear 0 0.01 0.01 0.00
mixed 123 0.24 1.65 0.13
ratio 6 0.03 1.05 0.50
cyclic 4 0.04 0.14 0.06

1 to 30 columns in complexity, from 0% to 40% noise, and containing simple
root expressions as well as more difficult modal expressions. We gave each
problem 20 generations in which to evolve a solution.

We classify the problems according to the level of difficultyin the column
expressions generated for each symbolic regression problem. Rootproblems
do not contain conditionals (if then else clauses).Modalproblems may contain
conditionals.

Example of a one-column root expression:

y = (11.3665735467+(16.94203837131*(exp(x0) % abs(x0))));

Example of a one-column modal expression:

y = (-20.29753816981+(12.1706446781*(if ((tanh(x0) - x0)

>= (abs(x0) - sqrt(x0))) ((x0*x0*x0) + (x0*x0))

else (exp(x0) - sign(x0)))));

There are thousands of separate, independent symbolic regressions tests re-
ported in this paper. For each problem type (Root or Modal) there are 12 unique
column-noise combinations. There are a total of 24 test cases all in all.

A test is considered excellent if its NLSE is less than .31 andreasonably
good if its NLSE is less than .51. Additionally, a test is considered excellent if
its TCE is less than .21 and reasonably good if its TCE is less than .31.

The results of training on the randomly generated training models on 10,000
rows and from 1 to 30 columns with 0 to 40 percent noise are shown in Table 14-
3.

For trivial single-column problems, almost all tests show almost perfect
classification scores even for problems with 40% noise. As weincrease the



224 GENETIC PROGRAMMING THEORY AND PRACTICE VI

number of columns, we lose our accuracy as seen from the increasing NLSE
score. But even in our most difficult problems we are achieving over 70%
excellent classification scores. This is unprecedented.

Table 14-3. Result for 10,000 rows by 1-30 columns with 0-40% Random Noise. The top of the
results are for the Root tests and the second half is for the Modal tests, as indicated in the left-
most column. The rest of the columns are:Cols: The number of columns of data (1, 10, 20, 30);
andNoise: The amount of noise added (0%, 20%, 40%). Count: Total number of such tests;
TrainNLSE:Average training run for all the tests;TestNLSE:Average testing error for all tests;
TCE: Average classify score for all tests;% GoodReg:Percent of tests with a test NLSE less
than 0.31; and% GoodClass:Percent of tests with a TCE Score less than 0.21.

Cols Noise Count Train Test TCE %Good %Good
NLSE NLSE Reg Class

R 1 0% 23 0.016 0.015 0.0007 100.00 100.00
O 20% 25 0.131 0.132 0.032 92.00 98.61
O 40% 25 0.158 0.161 0.014 96.00 95.83
T 10 0% 130 0.285 0.286 0.036 65.38 93.85

20% 107 0.309 0.294 0.062 68.22 88.79
40% 86 0.369 0.370 0.080 63.95 87.21

20 0% 66 0.422 0.394 0.074 50.00 90.91
20% 90 0.460 0.450 0.084 43.33 84.44
40% 37 0.463 0.423 0.050 45.95 91.89

30 0% 55 0.604 0.608 0.118 23.64 74.55
20% 52 0.625 0.560 0.099 26.92 84.62

40% 51 0.616 0.560 0.095 17.65 84.31
M 1 0% 47 0.043 0.034 0.003 97.87 100.00
O 20% 72 0.120 0.121 0.021 94.44 98.61
D 40% 48 0.243 0.246 0.054 77.08 95.83
A 10 0% 88 0.405 0.318 0.044 62.50 90.91
L 20% 117 0.439 0.390 0.048 56.41 90.60

40% 39 0.466 0.462 0.036 46.15 97.44
20 0% 68 0.444 0.455 0.062 44.12 92.65

20% 69 0.630 0.577 0.093 30.43 86.96
40% 85 0.552 0.534 0.059 37.65 89.41

30 0% 80 0.649 0.579 0.080 30.00 86.25
20% 65 0.690 0.658 0.101 15.38 83.08
40% 117 0.730 0.676 0.118 17.09 75.21

Effects Number of Column and Noise Levels. We randomly generated
tests for the different test cases as seen in Table 3. We generated tests for the
following number of columns: 1, 10, 20, and 30, with the following noise
levels: 0%, 20%, and 40% for simple root expressions and for more difficult
modal expressions.



Profiling Symbolic Regression-Classification 225

On first glance at Table 14-3 and at Figures 14-1 and 14-2, the classification
score (TCE) and the regression score (TCE) get worse as the number of columns
and the level of noise increase. To test the separate and mutual effects of the
number of columns, and noise levels on the classification score (TCE) and the
Test error (NLSE) , we performed the ANOVA on our test results at 0.01 level
of significance.

Figure 14-1. TCE Score Results for Root and Modal Tests, for 0%, 20%, and 40% noise levels,
and 1, 10, 20 and 40 columns.

Figure 14-2. Test NLSE Score Results for Root and Modal Tests for 0%, 20%, and 40% noise
levels, and 1, 10, 20 and 40 columns.

For the classification score (TCE), the ANOVA results are the same for both
root and modal problems. The results show that the number of columns and
noise level separately have significant F-values, with the noise level posing a
higher F-score than the number of columns. The ANOVA resultsfor the interac-
tion between noise level and number of columns is not statistically significant.

This means that increasing number of columns or the noise level alone wors-
ens the TCE. Increasing the noise level has more effect in worsening the TCE
than increasing the number of columns. Surprisingly, thereis no statistical



226 GENETIC PROGRAMMING THEORY AND PRACTICE VI

Table 14-4. 30-column problems with varying Noise Levels. The column headings are as
follows: Test: Number of Tests;20Gens: Average Test NLSE or TCE for 20 generations;
200Gens:Average Test NLSE or TCE for 200 generations;Difference:Test NLSE or TCE in
200 Generations; and subtracted by Test NLSE or TCE in 20 Generations.

TEST TCE
NLSE

Tests 20 200 Diff 20 200 Diff
Gens Gens Gens Gens

Modal 0% 32 0.870 0.632 0.238 0.297 0.125 0.171
20% 33 0.785 0.714 0.070 0.125 0.146 -0.021
40% 31 0.661 0.601 0.060 0.112 0.110 0.002

Root 0% 34 0.637 0.615 0.022 0.134 0.332 -0.197
20% 26 0.716 0.578 0.139 0.138 0.115 0.022
40% 19 0.568 0.524 0.044 0.083 0.136 -0.053

confirmation that an increase in the number of columns with a corresponding
increase in noise level will significantly worsen the TCE.

For the regression score (Test NLSE), using the F-test at 0.01 level of signif-
icance, the ANOVA results for the interaction between noiselevels and number
of columns show very high F-values for both root and modal problems. How-
ever, for root problems, the number of columns or the noise level separately do
not pose significant F-values. For modal problems, only the number of columns
pose a significant F-value.

This shows that ANOVA results provide no statistically significant confirma-
tion that there will a corresponding increase in the NLSE when we increase the
number of columns or the noise level separately for root problems. This result is
different for modal problems where an increase in the numberof columns alone
would significantly worsen the NLSE. For both root and modal problems, it is
an increase in the number of columns coupled with a corresponding increase in
the noise level that worsens NLSE as seen from the resulting high F-scores for
the noise-column interaction.

Effects Increasing the Number of Training Generations. We have in-
creased the number of generations from 20 to 200 in our 30-column tests to see
if the evolved solution is more accurate.

From the results in Table 14-4, Test NLSE Results are improved by increas-
ing the number of generations for both modal and root problems. However,
increasing the number of generations do not necessarily improve TCE results.
In fact, in some cases due to over fitting, TCE scores after 200generations are
worse.



Profiling Symbolic Regression-Classification 227

An additional uncompleted test is currently underway. The system has been
given a complicated modal problem with five variables (columns), no noise, and
20,000 generations to train. At the time of this publicationwe see continuous
improvement in the training NLSE. At 20 generations the training NLSE was
.75, by 100 generations training NLSE had dropped to .65, by 600 generations
training NLSE had fallen to .64, and at 7,000 generations thetraining NLSE is
now down to .37.

There does not appear to be any hard barrier to continuous training improve-
ment in this system (we believe this to be due to the ALPS strategy). However,
we will not know until generation 20,000 whether or not the system has over
fit (as happened in some cases above after only 200 generations).

Summary

Genetic Programming, from a corporate perspective, is ready for industrial
use onsomelarge scale, time constrained symbolic regression-classification
problems. Adapting the latest research results, has created a symbolic regres-
sion tool whose efficiency is exciting.

While there is no evidence to suggest that the eight techniques included
in this system are the absolute best, it is a credit to the scientists pioneering
Genetic Programming that at least this combination of techniques has produced
a system, which for hundreds of randomly generated difficultmodal problems
with 30 columns and 40% noise, we obtained an excellent classification score
in 75% of the test cases.

Financial institutional interest in the field is growing while pure research con-
tinues at an aggressive pace. Further applied research in this field is absolutely
warranted. We are using ourgenetic symbolic regression-classification machine
(GSM) in the financial domain. But as new techniques are addedand current
ones improved, we believe that GSM has evolved to be a domain-independent
tool that can provide superior regression and classification results for industrial
scale symbolic regression problems.

Additional research separating the effects of each of the eight techniques on
training time, and testing NLSE/TCE is necessary. Currently we need a more
detailed understanding of the individual effects of each ofthese techniques and
of their effects in specific combinations. Furthermore, we need more research
on the effects of longer training times (20,000 generationsand more) on system
convergence and over fitting.

Clearly we need to experiment with techniques which will improve our per-
formance on the modal test cases. The primary area for futureresearch involves
experimenting with statistical other types of analysis to help build conditional
WFFs for difficult multi-modal problems.



228 GENETIC PROGRAMMING THEORY AND PRACTICE VI

References

Hornby, Gregory S. (2006). ALPS: the age-layered population structure for
reducing the problem of premature convergence. In Keijzer,Maarten, Cat-
tolico, Mike, Arnold, Dirk, Babovic, Vladan, Blum, Christian, Bosman, Pe-
ter, Butz, Martin V., Coello Coello, Carlos, Dasgupta, Dipankar, Ficici, Se-
van G., Foster, James, Hernandez-Aguirre, Arturo, Hornby,Greg, Lipson,
Hod, McMinn, Phil, Moore, Jason, Raidl, Guenther, Rothlauf, Franz, Ryan,
Conor, and Thierens, Dirk, editors,GECCO 2006: Proceedings of the 8th an-
nual conference on Genetic and evolutionary computation, volume 1, pages
815–822, Seattle, Washington, USA. ACM Press.

Korns, Michael F. (2006). Large-scale, time-constrained symbolic regression.
In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors, Genetic Pro-
gramming Theory and Practice IV, volume 5 ofGenetic and Evolutionary
Computation, chapter 16, pages –. Springer, Ann Arbor.

Korns, Michael F. (2007). Large-scale, time-constrained symbolic regression-
classification. In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors,
Genetic Programming Theory and Practice V, Genetic and Evolutionary
Computation, chapter 4, pages 53–68. Springer, Ann Arbor.

Koza, John R. (1992).Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Majeed, Hammad and Ryan, Conor (2006). Using context-awarecrossover
to improve the performance of GP. In Keijzer, Maarten, Cattolico, Mike,
Arnold, Dirk, Babovic, Vladan, Blum, Christian, Bosman, Peter, Butz, Mar-
tin V., Coello Coello, Carlos, Dasgupta, Dipankar, Ficici,Sevan G., Foster,
James, Hernandez-Aguirre, Arturo, Hornby, Greg, Lipson, Hod, McMinn,
Phil, Moore, Jason, Raidl, Guenther, Rothlauf, Franz, Ryan, Conor, and
Thierens, Dirk, editors,GECCO 2006: Proceedings of the 8th annual con-
ference on Genetic and evolutionary computation, volume 1, pages 847–854,
Seattle, Washington, USA. ACM Press.

O’Neill, Michael and Ryan, Conor (2003).Grammatical Evolution: Evolution-
ary Automatic Programming in an Arbitrary Language. Kluwer Academic
Publishers, Dordrecht Netherlands.

Poli, Riccardo, Langdon, William B., and McPhee, Nicholas Freitag (2008).A
field guide to genetic programming. Published viahttp://lulu.com and
freely available athttp://www.gp-field-guide.org.uk. (With contri-
butions by J. R. Koza).

Schmidt, Michael D. and Lipson, Hod (2007). Learning noise.In Thierens, Dirk,
Beyer, Hans-Georg, Bongard, Josh, Branke, Jurgen, Clark, John Andrew,
Cliff, Dave, Congdon, Clare Bates, Deb, Kalyanmoy, Doerr, Benjamin, Ko-
vacs, Tim, Kumar, Sanjeev, Miller, Julian F., Moore, Jason,Neumann, Frank,
Pelikan, Martin, Poli, Riccardo, Sastry, Kumara, Stanley,Kenneth Owen,



Profiling Symbolic Regression-Classification 229

Stutzle, Thomas, Watson, Richard A, and Wegener, Ingo, editors,GECCO
’07: Proceedings of the 9th annual conference on Genetic andevolutionary
computation, volume 2, pages 1680–1685, London. ACM Press.




