Chapter 14

PROFILING SYMBOLIC
REGRESSION-CLASSIFICATION

Michael F. Korns, Loryfel Nunez
Lnvestment Science Corporation, 1 Plum Hollow, Henderdlmvada 89052 USA

Abstract

Keywords:

This chapter performance-profiles a composite method obsjimregression-
classification, combining standard genetic programmirttp @wbstract grammar
techniques, particle swarm optimization, differentiablesion, context aware
crossover, and age-layered populations. In two previopsisave experimented
with combining high performance techniques from the litera to produce a
large scale symbolic regression-classification systenthitnchapter we briefly
describe the current combination of techniques and makagbertion that Sym-
bolic Regression-Classification (via Genetic Programryisugow ready for some
industrial strength applications. This aggressive asseis supported with per-
formance metrics on multiple large scale problems whichsamred on testing
data which is always distinct from the training data. Eaabbfgm contains ten
thousand fitness cases (rows) and problems vary in compleait one to thirty
independent variables (columns). In each problem, the rikpe variable is
generated by a test expression which varies in complexisnfsimple linear
to complex non-linear often including conditionals (iktirelse clauses) with
random noise starting at zero percent and rising up to fastgent.

artificial intelligence, genetic programming, particlesswm optimization, differ-
ential evolution, portfolio selection, data mining, fornggammars, quantitative
portfolio management

1. Introduction

This is the continuing story of the issues encountered bgdtmaent Science
Corporation in using composite genetic programming tespes to construct
a large-scale, time-constrained symbolic regressiossiiaation tool for use
with financial data.

In two previous papers (Korns, 2006; Korns, 2007) our parstiindus-
trial scale performance with large-scale, time-consediaymbolic regression

216 GENETIC PROGRAMMING THEORY AND PRACTICE VI

problems, required us to reexamine many commonly held fisedied, of ne-
cessity, to borrow a number of techniques from disparat®ashof genetic
programming and "recombine” them in ways not normally seethe pub-
lished literature. We continue this tradition in this cunrgpaper, building a
symbolic regression-classification tool combining thédiwing disparate tech-
niques from the genetic and evolutionary programmingditere:

= Standard tree-based genetic programming

= Vertical slicing and out-of-sample scoring during traigin
= Grammar template genetic programming

= Abstract grammars utilizing swarm intelligence

= Context aware cross over

= Age-layered populations

= Random noise terms for learning asymmetric noise

= Bagging

For purposes of comparison, all results in this paper wehgeged on two
workstation computers, specifically an In@Core 2 Duo Processor T7200
(2.00GHz/667MHz/4MB) and a Dual-Core AMD OpterorProcessor 8214
(2.21GHz), running our Analytic Information Server softe@a@enerating Lisp
agents that compile to use the on-board Intel registers archip vector pro-
cessing capabilities so as to maximize execution speedseviietails can be
found atwww.korns.com/Documehtsp Languagesuide.html

Fitness Measure

Standard regression techniques often utilize least sgquarer (LSE) as a
fithness measure. In our case we normalize by dividing LSE bystandard
deviation of "Y" (dependent variable). This normalizatiaifows us to mean-
ingfully compare the normalized least squared error (NL&Eveen different
problems.

Of special interest is combining fitness functions to suppoth symbolic
regression and classification of common stocks into longstuodt candidates.
Specifically we would like to measure how successful we apreticting the
future top 10% best performerofig candidatesand the future 10% worst
performers ghort candidates(Korns, 2007).

Briefly, letthe dependentvariable, Y, be the future profis®et of securities,
and the variable, EY, be thestimatesof Y. If we were prescient, we could
automatically selectthe best future performertialBestLongs, ABand worst

Profiling Symbolic Regression-Classification 217

future performersactualBestShorts, AB®y sorting on Y and selecting an
equally weighted set of the top and bottom 10%. Since we dngrascient, we
can only select the best future estimated perforrastenatedBestLongs, EBL,
and estimated worst future performestimatedBestShorts, EBfy,sorting on
EY and selecting an equally weighted set of the top and botio%a. If we let
the functionavgyrepresent the average y over the specified set of fithess, cases
then clearly the following will always be the case.

-1 <= ((avgy(EBL) - avgy(EBS)) / (avgy(ABL) - avgy(ABS)x= 1

We can construct a fithess measure known as tail classificatior, TCE,
such that

TCE= ((1 - ((avgy(EBL) - avgy(EBS)) / (avgy(ABL) - avgy(ABS))))
/2)
and therefore
0<=TCE<=1

A situation where TCE < .5 indicates we are making money dpéog on
our short and long candidates. Obviously 0 is a perfect eaeemight as well
have been prescient) and 1 is a perfectly imperfect scohe(ataders should
do the opposite of what we do). Clearly, considering our fammotivation,
we are interested in achieving superior regression fitnesasores; but, we
are also interested in superior classification. In fact,neWweghe regression
fitness (NLSE) is poor but the classification (TCE) is good cave still have an
advantage, in the financial markets, with our symbolic regjen-classification
tool.

Since both the TCE and NLSE fitness measures are normalizsthmmake
standard interpretations of results across a wide rangepsranents. In the
case of NLSE, any score of .3 or less is very good (meaningwheage least
squared error is less than 30% of the standard deviation pWiijle a score
of less than .5 is okay, NLSE scores greater than .5 indicateasingly poor
regression results. Our system automatically averagesdfirates of the ten
top champions (bagging) whenever the training NLSE of tipectoampion is
greater than .5. Finally, a TCE score of less than .2 is eawellA TCE score
of less than .2 is good; while, a TCE of .5 or greater is poor.

Vertical Slicing

We make use of an out-of-sample testing procedure wevediical slicing
wherein the rows in the training matrix X are sorted in astegarder by the
dependent values, Y. Then the sorted rows in X are subdivittedS vertical
sliceshy selecting every S-th row to be in each vertical slice. Tthesfirst
vertical slice is the set of training rows as follow§0], X[S], X[2*S], We
train on a single vertical slice, but test on all verticatek (Korns, 2006).

218 GENETIC PROGRAMMING THEORY AND PRACTICE VI

Since Y represents thHe=haviorof the system to be learned, sorting X by Y
insures that each vertical slice contains training examplgually distributed
across the range of behaviors of the system. For complatengacoverage,
every epoch we randomly select a different vertical slicéhagraining subset
while still scoring fitness across every fitness example in X.

Vertical slicing reduces training time (which in multiplegression and
swarm grammars can be time consuming); while simultangaasglucing over
fitting by scoring fitness over all slices (out-of-sampldites.

Abstract Grammar

Recently, informal and formal grammars have been used ietgepro-
gramming to enhance the representation and the efficienaynafmber of ap-
plications including symbolic regression — see overviaw®’'Neill and Ryan,
2003) and (Poli et al., 2008).

Our system implements a hybrid combination of tree-basec@@Pformal
grammars where the head of each sublist is a grammar rulepelyfmorphic
methods for mutation, crossover, etc. Different grammégsicommunicate
with each other by message passing. We use standard mugatiocrossover
operations (Koza, 1992) and support both simple regressidmultiple regres-
sion, as follows:regress(expressiongandregress(expression,...,expression)

Our numeric expressions are JavaScript-like containirg wairiablesx0
throughxm (wherem is the number of columns in the regression problem),
real constants such &45 or -34.687 with the following binary and unary
operators +, -, /, %, *<, <=, ==,! =, >=, >, expt, max, min, abs, cos, cosh,
cube, exp, log, sin, sinh, sqroot, square, tan, tanh, antethary conditional
expression operator if (...) then ... else ...;

In (Korns, 2006), we implemented both the production andgattion side
of our grammars. Later in (Korns, 2007) we developed an abisgrammar
which is evaluated using swarm intelligence and providezkent fine grain
control during evolution.

The enhancement of abstract real constaftthroughck (wherek is the
number of unique abstract real constants in the expressitmys more fine
grain control over the evolution of optimal real numbersidgthe GP process.

For instance, the following concrete expressiegress(3.4*sin(x3))when
evaluated, has a fitness score based upon regressing 3s4tigrsine of variable
three. However, the following abstract expressiegress(c0*sin(x3))which
must be evaluated in a swarm agent, has a fitness score basethepswarm
agent’s choice of optimal real constant ftd. Our experience is that swarm
intelligence is an excellent method of optimizing specifialrconstants.

Profiling Symbolic Regression-Classification 219

Additionally, the enhancement of abstract variabl®@shroughvj (wherej
is the number of unique abstract variables in the exprepsilbows more fine
grain control when optimizing formulas with a specific graatioal format.

For instance, the following abstract expressiegress(c0*sin(v0))which
must be evaluated in a swarm agent, has a fitness score basethepswarm
agent’s choice of actual real constanté®and the swarm’s choice of actual con-
crete variables0. An example of an optimized champion from the swarm agent
might beregress(-.416*sin(x10))One is always assured that the final swarm
optimized champion will be in a form compatible with the abst grammar
expression supplied. The possibilities for addressingttdoe obvious.

Thisyear, as an extension of our previous experiments Witract grammar,
we introduce abstract random noise tem@¢hroughekfor learning asymmet-
ric noise (Schmidt and Lipson, 2007). For instance, theofailhg abstract
expressiomegress(c0*sin(v0+e0)which must be evaluated in a swarm agent,
is evaluated iteratively an additional number of times wihdom values be-
tween -1 and +1 replacing the® noise term. The fithess score is based upon
the swarm agent’s choice of actual real constant@and the choice of actual
variable forv0, while the noise terneQis randomly fluctuated between -1 and
+1 as described in greater detail in (Schmidt and Lipson7200

By using an abstract expression grammar with imbedded sveatimiza-
tion, we achieve more fine-grained control, of numeric camsbptimization,
expression bloat, and learning asymmetric noise.

Context-aware Crossover

In (Majeed and Ryan, 2006) an extension of standard GP cresseas
devised. In standard GP crossover (Koza, 1992), a randohdgen snip of
genetic material from the father s-expression is substitinto the mother s-
expressioninarandom location. Incontext-aware crogsavandomly chosen
snip of genetic material from the father s-expression issstuted into the
mother s-expressioat all possible valid locationsWhere standard crossover
produces one child per operation, context-aware crosstaeproduce many
childrendepending upon the contgorns, 2007).

We further extended context-aware crossover such dligtossible valid
snips of genetic material from both the mother and fathersatestituted into
both parentsat all possible valid locations Each of the many offspring are
evaluated with only the survivors being added to the pool. adie our ex-
tended context-aware crossover to all GP runs in our systéimanncreasing
probability with each additional generation.

Context-aware crossover holds-forth the promise of greateerage of
the local search space, as defined by the candidate s-agpes®ots and

220 GENETIC PROGRAMMING THEORY AND PRACTICE VI

branches, and, therefore, a greater control of the evolatiosearch at a fine
grain level.

Age-Layered Populations

In (Hornby, 2006) a technique is introduced, knowrmagsed-layered popula-
tion structure(ALPS), devised to minimize premature population conveoge
ALPSs evolve populations in several significant ways. Nemdoem popula-
tions are generated at irregular intervals over the dumatiothe evolutionary
process. Populations are segmented by the age of the indisigvith evolu-
tionary competition restricted to individuals within rculg the same age cohort
(young individuals are not allowed to be swamped by more reandividu-
als). Atirregular intervals, younger champions are pragddnto populations
allowing competition with older individuals (Hornby, 2006

ALPS differs from a typical evolutionary process by segtegpindividuals
into different age-layers and by regularly introducing neamdomly generated
individuals in the youngest layers. The introduction ofdamly generated
individuals at regular intervals results in an evolutignprocess that is never
completely converged andis always exploring new partsafithess landscape.
By restricting the age of competitors and breeding withiag& cohort, younger
individuals are able to develop without being swamped bgiodches. Analysis
of the behavior of ALPS finds that individuals that are rantogenerated
mid-way through a run are able to move the population out adiowe local
optima to better parts of the fithess landscape. If they doevall to develop,
in their youth, free from unfair competition by more matuchls.

Experimental Setup

Our goal is to profile the performance of ogenetic symbolic regression-
classification machin@GSM) on a series of symbolic regression-classification
problems. All of our symbolic regression-classificatiomlems consist of a
training phase and a distinct testing phase. In the traiphmgge, an (N x M)
real number matrix, X, is filled with random numb&rdhen a training model,
f(x), is selected to create a real number N-dimensionaloreat dependent
variables, Y, as follows:

Y =1(X) + noise; vector equation

Training models vary from simple linear all the way to compi@nlinear.
For example:

y = 1.57 + (1.57*x0) - (39.34*x1); simple linear

IN refers to number of rows in the matrix (always 10,000 rowkess otherwise stated). M refers to the
number of columns (columns vary from 1 to 30 depending upshd#ficulty). The range of the random
numbers is from -50 to +50 unless otherwise stated.

Profiling Symbolic Regression-Classification 221

y = ((1.57%x0)%(39.34%x1))
+ (if (log(x0) == x2) {sin(2.13%x2)}
else {((39.34%x1)%(2.13*x2))}); complex nonlinear

In (Korns, 2007) we published nine base training models wkary from
simple linear to complex nonlinear. In this paper we gemenaimerous training
models at random. These training models vary from simpkesalirio complex
nonlineaf. Furthermore, our problem set varies from one column prosle
more difficult thirty column problems, and from zero randoaise to problems
with 40% random noise, which is generated as follows:

y = (y * 0.8) + (y * random(0.4));

The output of the training phase is a champion estimator inefevhich,
when evaluated on the training matrix, generates an egtthfdtvector, EY:

EY = ef(X) + noise; estimator model

In the testing phase, another (N x M) real number matrix, BXilied with
random numbers. Then the original training model, f(x),valeated on TX
to create a real number N vector of dependent testing vasaflY. Then the
champion estimator model, ef, is evaluated on the testingixndX, and the
normalized least squares error (NLSE) difference betwe¥éraid TY is the
final out-of-sample testing score.

For each of the numerous experimental problems attemptekisgprofiling
study, we collected the following important data: Uniquetitem Identifier;
Training generations to completion; Training noise; Tragnminutes to com-
pletion; Training normalized least squared error (NLSEsfing normalized
least squared error (NLSE); Testing classification err@2E}; Champion esti-
mator model; and the Training model.

Results on Nine Base Problems

The results of training on the nine base training models g@AMrows and
twenty columns with 40% random noise and only 20 generatidiosved, are
shown in Table 14-1.

Fortunately, training time is very reasonable given thdialifty of some
of the problems and the limited number of training generatiallowed. In
general, average percent error performance is poor withinlear and cubic
problems showing the best performance. Extreme diffeebetveen training
error and testing error in theixedand ratio problems suggest over-fitting.
Surprisingly, long and short classification is fairly robirsmost cases with the
exception of thénidden ratio andhypertest cases. If we were to run a market
neutral hedge on hypothetical markets, driven by these teisiemodels, we
would have made money in all but one of the markets, maddeuitoney in

2The complete set of randomly generated training modelseseribed in detail on www.korns.com.

222 GENETIC PROGRAMMING THEORY AND PRACTICE VI

Table 14-1. Result for 10,000 rows by 20 columns with Random Noise. Themns are:Test:
The name of the test cagdjnutes: The number of minutes required for trainintrain-Error:
The average percent error score for the training degat-Error: The average percent error score
for the testing data; an@lassify: The classification score for the testing data.

Test Minutes Train-Error Test-Error Classify
cross 9 0.80 0.80 0.19
cubic 10 0.11 0.11 0.00
hyper 9 0.96 0.96 0.36
elipse 12 0.45 0.46 0.05
hidden 10 0.99 0.99 0.45
linear 10 0.11 0.11 0.00
mixed 12 0.69 1.85 0.07
ratio 26 0.95 1.18 0.46
cyclic 8 0.39 0.91 0.18

the markets driven by theiddenandhypermodels, broken even in the market
driven by theratio model, and made excellent money in all other markets.

The salient observation is the relative ease of classifinatiompared to
regression even in problems with this much noise. In five eftést cases,
testing NLSE is either close to or exceeds the standard titmviaf Y (not very
good); however, in six of the test cases classification ievie@0

The obvious comparison with the above difficult problems ldobe to
try easier problems by eliminating the random noise, rauyd¢he number
of columns, and increasing the number of training genenat@lowed. The
results of training on the nine base training models on 1M j@vs andfive
columnswith no random noisend up to200 generations allowed, are shown
in Table 14-2.

Fortunately, reducing the problem difficulty greatly impes the results. In
general, average percent error performance is now very.gegtteme differ-
ences between training error and testing error inrtfieedandratio problems
suggest over-fitting. Long and short classification is dro¢lin most cases
with the exception of theatio test case.

Now let us examine the performance of the GSM tool in the maalpms
whose difficulty falls in between the two extremes shown &bdm the next few
sections, we will profile the behavior of the tool on a widegarof randomly
generated problems.

Results on Advanced Problems. Using the system’s production grammar
features, we generated thousands of symbolic regressibiepns ranging from

Profiling Symbolic Regression-Classification 223

Table 14-2. Result For 10,000 rows by 5 columns no Random Noise. The awdare the same
as in Table 14-1.

Test Minutes Train-Error Test-Error Classify
cross 107 0.37 0.39 0.02
cubic O 0.00 0.00 0.00
hyper 369 0.00 0.00 0.00
elipse 0 0.00 0.00 0.00
hidden 3 0.00 0.05 0.00
linear O 0.01 0.01 0.00
mixed 123 0.24 1.65 0.13
ratio 6 0.03 1.05 0.50
cyclic 4 0.04 0.14 0.06

1 to 30 columns in complexity, from 0% to 40% noise, and cartg simple
root expressions as well as more difficult modal expressiofe gave each
problem 20 generations in which to evolve a solution.

We classify the problems according to the level of difficuftiythe column
expressions generated for each symbolic regression pnodRoot problems
do not contain conditionals (if then else clausédidal problems may contain
conditionals.

= Example of a one-column root expression:
y = (11.3665735467+(16.94203837131*(exp(x0) % abs(x0))));

= Example of a one-column modal expression:

y = (-20.29753816981+(12.1706446781* (if ((tanh(x0) - x0)
>= (abs(x0) - sqrt(x0))) ((x0*x0*x0) + (x0%*x0))
else (exp(x0) - sign(x0)))));

There are thousands of separate, independent symboli&ssegns tests re-
ported in this paper. For each problem type (Root or Moda&ldfare 12 unique
column-noise combinations. There are a total of 24 testscalbé all.

A test is considered excellent if its NLSE is less than .31 ssaonably
good if its NLSE is less than .51. Additionally, a test is ddesed excellent if
its TCE is less than .21 and reasonably good if its TCE is lemss t31.

The results of training on the randomly generated trainimnglets on 10,000
rows and from 1 to 30 columns with 0 to 40 percent noise are shiowable 14-
3.

For trivial single-column problems, almost all tests shdmast perfect
classification scores even for problems with 40% noise. Asngeease the

224 GENETIC PROGRAMMING THEORY AND PRACTICE VI

number of columns, we lose our accuracy as seen from theasiog NLSE
score. But even in our most difficult problems we are achgwner 70%
excellent classification scores. This is unprecedented.

Table 14-3. Result for 10,000 rows by 1-30 columns with 0-40% Random 8loihe top of the
results are for the Root tests and the second half is for theéaWtests, as indicated in the left-
most column. The rest of the columns a@pols: The number of columns of dat&, (10, 20, 30);
andNoise: The amount of noise added%, 20%, 40%). Count: Total number of such tests;
TrainNLSE:Average training run for all the test$estNLSEAverage testing error for all tests;
TCE: Average classify score for all test® GoodReg:Percent of tests with a test NLSE less
than 0.31; andb GoodClass:Percent of tests with a TCE Score less than 0.21.

Cols | Noise | Count | Train Test TCE %Good | %Good
NLSE | NLSE Reg Class

R 1 0% 23 0.016 | 0.015 | 0.0007 | 100.00 | 100.00
(0] 20% 25 0.131 | 0.132 | 0.032 92.00 98.61
(0] 40% 25 0.158 | 0.161 | 0.014 96.00 95.83
T 10 0% 130 0.285 | 0.286 | 0.036 65.38 93.85
20% 107 0.309 | 0.294 | 0.062 68.22 88.79
40% 86 0.369 | 0.370 | 0.080 63.95 87.21
20 0% 66 0.422 | 0.394 | 0.074 50.00 90.91
20% 90 0.460 | 0.450 | 0.084 43.33 84.44
40% 37 0.463 | 0.423 | 0.050 45.95 91.89
30 0% 55 0.604 | 0.608 | 0.118 23.64 74.55
20% 52 0.625 | 0.560 | 0.099 26.92 84.62
40% 51 0.616 | 0.560 | 0.095 17.65 84.31

M 1 0% 47 0.043 | 0.034 | 0.003 97.87 | 100.00
(@] 20% 72 0.120 | 0.121 | 0.021 94.44 98.61
D 40% 48 0.243 | 0.246 | 0.054 77.08 95.83
A 10 0% 88 0.405 | 0.318 | 0.044 62.50 90.91
L 20% 117 0.439 | 0.390 | 0.048 56.41 90.60
40% 39 0.466 | 0.462 | 0.036 46.15 97.44
20 0% 68 0.444 | 0.455 | 0.062 44.12 92.65
20% 69 0.630 | 0.577 | 0.093 30.43 86.96
40% 85 0.552 | 0.534 | 0.059 37.65 89.41
30 0% 80 0.649 | 0.579 | 0.080 30.00 86.25
20% 65 0.690 | 0.658 | 0.101 15.38 83.08
40% 117 0.730 | 0.676 | 0.118 17.09 75.21

Effects Number of Column and Noise Levels. We randomly generated
tests for the different test cases as seen in Table 3. Weaedetests for the
following number of columns: 1, 10, 20, and 30, with the fallog noise
levels: 0%, 20%, and 40% for simple root expressions and fanendlifficult
modal expressions.

Profiling Symbolic Regression-Classification 225

On first glance at Table 14-3 and at Figures 14-1 and 14-2 |assitication
score [CE) and the regression scorBGE) get worse as the number of columns
and the level of noise increase. To test the separate anchheiffacts of the
number of columns, and noise levels on the classificatioreSG&CE) and the
Test error NLSE) , we performed the ANOVA on our test results at 0.01 level
of significance.

TCE (MODAL) TCE (Root)
0.14 0.14 4
012 0.1z
01 014
w 0.08 u 0.08
e 1.06 = 0.06 A
0.04 0.04 4
002 0.02
o
0 1 10 20 20 1 10 20 30

. 0% 0.0026 0.0439 0.0624 00798 ——0% 0.0007 0.0356 0.074 0.1176

20% 0.0208 0.0479 0.0928 0.1008 —1—20% | 0.0315 0.0817 0.0841 0.099

40% 0.0541 0.0362 0.059 0118 —ir—40% | 0.0141 0.0803 0.049 0.0945

Number of Columns Humber of Columns

Figure 14-1. TCE Score Results for Root and Modal Tests, for 0%, 20%, aftiddse levels,
and 1, 10, 20 and 40 columns.

TestNLSE (MODAL) TestNLSE (ROOT)
0.8 4 0.7 -
0.7 4 0.6 4
0.6 4
w 0.5
g w
2 o] 04
z o z
-
5 0.34 E 037
= 0.2 0.2
0.1+ 0.1+
0 0
1 10 20 30 1 10 20 30
—— 0% 0.0342 0.3178 0.4554 0.5793 — 0% 0.0149 0.286 0.394 0.6076
=0=20% 0.1208 0.2904 0.5774 0.6583 —0—20% 0.1317 0.2937 0.4501 0.5585
—h—40% 0.2462 0.4621 0.5335 0.6756 =i 40% 0.1608 0.3701 0423 0.5551
Number of Colummns Numberof Columns

Figure 14-2. Test NLSE Score Results for Root and Modal Tests for 0%, 20fb48% noise
levels, and 1, 10, 20 and 40 columns.

For the classification scord@ CE), the ANOVA results are the same for both
root and modal problems. The results show that the numbeolahms and
noise level separately have significant F-values, with thisenlevel posing a
higher F-score than the number of columns. The ANOVA redaitthe interac-
tion between noise level and number of columns is not St significant.

This means that increasing number of columns or the nois dédene wors-
ens the TCE. Increasing the noise level has more effect isemimg the TCE
than increasing the number of columns. Surprisingly, thereo statistical

226 GENETIC PROGRAMMING THEORY AND PRACTICE VI

Table 14-4. 30-column problems with varying Noise Levels. The colummdirgs are as
follows: Test: Number of Tests20Gens: Average Test NLSE or TCE for 20 generations;
200Gens:Average Test NLSE or TCE for 200 generatioisfference: Test NLSE or TCE in
200 Generations; and subtracted by Test NLSE or TCE in 20 @gops.

TEST TCE
NLSE
Tests | 20 200 Diff 20 200 Diff
Gens Gens Gens Gens

Modal 0% 32 0.870 0.632 0.23§ 0.297 0.125 0.171
20% 33 0.785 0.714 0.070 0.125 0.146 -0.021
40% 31 0.661 0.601 0.060 0.112 0.110 0.002
Root 0% 34 0.637 0.615 0.022 0.134 0.332 -0.197
20% 26 0.716 0.578 0.139 0.138 0.115 0.022
40% 19 0.568 0.524 0.044 0.083 0.136 -0.053

confirmation that an increase in the number of columns witbreesponding
increase in noise level will significantly worsen the TCE.

For the regression scorédst NLSH, using the F-test at 0.01 level of signif-
icance, the ANOVA results for the interaction between nésels and number
of columns show very high F-values for both root and modabjmms. How-
ever, for root problems, the number of columns or the noigel lseparately do
not pose significant F-values. For modal problems, only thelrer of columns
pose a significant F-value.

This shows that ANOVA results provide no statistically sfgant confirma-
tion that there will a corresponding increase in the NLSE mwve increase the
number of columns or the noise level separately for rootigmis. This resultis
different for modal problems where an increase in the nurobeolumns alone
would significantly worsen the NLSE. For both root and modabgems, it is
an increase in the number of columns coupled with a correfipgnincrease in
the noise level that worsens NLSE as seen from the resuligigfscores for
the noise-column interaction.

Effects Increasing the Number of Training Generations. We have in-
creased the number of generations from 20 to 200 in our ADwoltests to see
if the evolved solution is more accurate.

From the results in Table 14-4, Test NLSE Results are imgttyeincreas-
ing the number of generations for both modal and root probletdowever,
increasing the number of generations do not necessarilyovepl CE results.
In fact, in some cases due to over fitting, TCE scores aftemgd@rations are
worse.

Profiling Symbolic Regression-Classification 227

An additional uncompleted test is currently underway. Tystean has been
given a complicated modal problem with five variables (catsinno noise, and
20,000 generations to train. At the time of this publicatea see continuous
improvement in the training NLSE. At 20 generations thenirag NLSE was
.75, by 100 generations training NLSE had dropped to .65,0@ydgenerations
training NLSE had fallen to .64, and at 7,000 generationgrtiring NLSE is
now down to .37.

There does not appear to be any hard barrier to continuoinéngamprove-
ment in this system (we believe this to be due to the ALPSesiyat However,
we will not know until generation 20,000 whether or not thetsyn has over
fit (as happened in some cases above after only 200 genefation

Summary

Genetic Programming, from a corporate perspective, isyréadindustrial
use onsomelarge scale, time constrained symbolic regression-dlagtbn
problems. Adapting the latest research results, has dreasgmbolic regres-
sion tool whose efficiency is exciting.

While there is no evidence to suggest that the eight teclesiducluded
in this system are the absolute best, it is a credit to theniste pioneering
Genetic Programming that at least this combination of tegles has produced
a system, which for hundreds of randomly generated difficwdtlal problems
with 30 columns and 40% noise, we obtained an excellentifitzdson score
in 75% of the test cases.

Financial institutional interestin the field is growing Wpure research con-
tinues at an aggressive pace. Further applied researctsifigll is absolutely
warranted. We are using ogenetic symbolic regression-classification machine
(GSM) in the financial domain. But as new techniques are addéedcurrent
ones improved, we believe that GSM has evolved to be a domdependent
tool that can provide superior regression and classifinatsults for industrial
scale symbolic regression problems.

Additional research separating the effects of each of tjeteéechniques on
training time, and testing NLSE/TCE is necessary. Curyent need a more
detailed understanding of the individual effects of eactnete techniques and
of their effects in specific combinations. Furthermore, veedhmore research
on the effects of longer training times (20,000 generatamsmore) on system
convergence and over fitting.

Clearly we need to experiment with techniques which will i@ our per-
formance on the modal test cases. The primary area for fregearch involves
experimenting with statistical other types of analysis étptbuild conditional
WFFs for difficult multi-modal problems.

228 GENETIC PROGRAMMING THEORY AND PRACTICE VI

References

Hornby, Gregory S. (2006). ALPS: the age-layered poputastructure for
reducing the problem of premature convergence. In Keijgkxarten, Cat-
tolico, Mike, Arnold, Dirk, Babovic, Vladan, Blum, Christh, Bosman, Pe-
ter, Butz, Martin V., Coello Coello, Carlos, Dasgupta, Digar, Ficici, Se-
van G., Foster, James, Hernandez-Aguirre, Arturo, Hor@gg, Lipson,
Hod, McMinn, Phil, Moore, Jason, Raidl, Guenther, Rothl&ufnz, Ryan,
Conor, and Thierens, Dirk, editoilGECCO 2006: Proceedings of the 8th an-
nual conference on Genetic and evolutionary computatiolume 1, pages
815-822, Seattle, Washington, USA. ACM Press.

Korns, Michael F. (2006). Large-scale, time-constraingalsolic regression.
In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editofsenetic Pro-
gramming Theory and Practice JWolume 5 ofGenetic and Evolutionary
Computationchapter 16, pages —. Springer, Ann Arbor.

Korns, Michael F. (2007). Large-scale, time-constraingatsolic regression-
classification. In Riolo, Rick L., Soule, Terence, and WarBdll, editors,
Genetic Programming Theory and Practice @enetic and Evolutionary
Computation, chapter 4, pages 53—-68. Springer, Ann Arbor.

Koza, John R. (1992 Genetic Programming: On the Programming of Com-
puters by Means of Natural SelectidWlIT Press, Cambridge, MA, USA.

Majeed, Hammad and Ryan, Conor (2006). Using context-awarssover
to improve the performance of GP. In Keijzer, Maarten, Qiibo Mike,
Arnold, Dirk, Babovic, Vladan, Blum, Christian, Bosman t&eButz, Mar-
tin V., Coello Coello, Carlos, Dasgupta, Dipankar, Ficeevan G., Foster,
James, Hernandez-Aguirre, Arturo, Hornby, Greg, LipsoodHMcMinn,
Phil, Moore, Jason, Raidl, Guenther, Rothlauf, Franz, Ry2onor, and
Thierens, Dirk, editorsGECCO 2006: Proceedings of the 8th annual con-
ference on Genetic and evolutionary computatimiume 1, pages 847-854,
Seattle, Washington, USA. ACM Press.

O’Neill, Michael and Ryan, Conor (2003krammatical Evolution: Evolution-
ary Automatic Programming in an Arbitrary Languag€luwer Academic
Publishers, Dordrecht Netherlands.

Poli, Riccardo, Langdon, William B., and McPhee, Nicholasitag (2008) A
field guide to genetic programmingublished viehttp://lulu.com and
freely available ahttp://www.gp-field-guide.org.uk. (With contri-
butions by J. R. Koza).

Schmidt, Michael D. and Lipson, Hod (2007). Learning ndis& hierens, Dirk,
Beyer, Hans-Georg, Bongard, Josh, Branke, Jurgen, Clahq Andrew,
Cliff, Dave, Congdon, Clare Bates, Deb, Kalyanmoy, Doeenfamin, Ko-
vacs, Tim, Kumar, Sanjeev, Miller, Julian F., Moore, Jaddgimann, Frank,
Pelikan, Martin, Poli, Riccardo, Sastry, Kumara, Stankgnneth Owen,

Profiling Symbolic Regression-Classification 229

Stutzle, Thomas, Watson, Richard A, and Wegener, IngopsditECCO
'07: Proceedings of the 9th annual conference on Geneticestutionary
computationvolume 2, pages 1680-1685, London. ACM Press.

